Machine learning using TIL

Adam Albert

Vysoka skola banska — Technicka univerzita Ostrava

Supervised machine learning
Refining the hypothesis space
Algorithm framework
Semantic network

Algorithm specification

Learning example

Outline

Supervised machine learning

Examples described by attributes(input/output) provided by a teacher
Hypothesis

Prediction of output attributes values from input attributes
Training/test examples

Classification/regression

Refining the hypothesis space

® Learning is finding hypotheses that are consistent with the training
data[Poole, 2010]

® There is only one output(Boolean) attribute Y
® Hypotheses determine output attribute value

® Thereis no noise in data
® Hypothesis is written as a proposition

® Refining of hypothesis(in form of proposition) by induction learning

Algorithm framework

® Machine learning algorithm can be described by[Luger, 2009]:
® Task goal

® Training data

® Data representation

® Knowledge modifying operations

Algorithm framework - task goal

® The goal is to find a general concept describing the class of arches.

Algorithm framework - training data

® The learner is working with a set of (positive) examples of arches and a set of
“almost” arches

® Teacher’s responsibilities

Algorithm framework - data representation

® The representation must be so fine that the agent is able to find the
hypothesis

® Arches in our example are defined by means of TIL constructions

Algorithm framework - operations

® Patrick Winston algorithm [Winston, 1992]
® Generalization — makes hypothesis more permissive

® Specialization — makes hypothesis more restrictive

Semantic network

® Relation link (Individual, Property/Attribute, Value)

Has_color

Property/Attribute

Algorithm

Specialization

® Specialization is used to refine the hypothesis by a near-miss example.

1. Compare the model hypothesis (to be refined) and the near-miss example
to find a significant difference

If there is a significant difference between model and near-miss example,
then

a) if the model has a link relation while the near-miss example does not,
use require-link

Require-link

® Heuristic is applied in case that the model has while the near-miss example
does not have a link relation.

® In the model the link relation is marked as MUST-BE.

Has_shape

Has_color

Specialization

® Specialization is used to refine the hypothesis by a near-miss example.

Compare the model hypothesis (to be refined) and the near-miss example to find a
significant difference

If there is a significant difference between model and near-miss example, then

a) if the model has a link relation while the near-miss example does not, use
require-link

b) if the near-miss example has a link relation that the model does not have, use
forbid-link

Forbid-link

® There is a link relation in the near-miss example which is missing in the
model.

® Model is enriched with this link relation marked by ‘MUST-NOT-BE’.

Specialization

® Specialization is used to refine the hypothesis by a near-miss example.

Compare the model hypothesis (to be refined) and the near-miss example to find a
significant difference

If there is a significant difference between model and near-miss example, then

a) if the model has a link relation while the near-miss example does not, use
require-link

b) if the near-miss example has a link relation that the model does not have, use
forbid-link

else ignore example

Generalization

* Generalization is used to refine hypothesis by a positive example

1. Compare the model hypothesis and the positive example to determine a difference

2. For each difference do

a) if alink relation in the model points at a value that differs from the value in the
example, then

if the values in which the model and example differ have the most specific general
class, use the climb-tree

Climb-tree

® This heuristic is applied in case we need to generalize the concepts to avoid
problems with too specialized models.

UST-BE-Has_shape

Has_shape

Has_color Has_color Has_color

polygon

Has_color

Has_color Has_color

Generalization

* Generalization is used to refine hypothesis by a positive example

1. Compare the model hypothesis and the positive example to determine a difference

2. For each difference do

a) if alink relation in the model points at a value that differs from the value in the example, then

if the values in which the model and example differ have the most specific general class,
use the climb-tree

else if the values in which the model and example differ don’t have the most specific
general class, use the enlarge-set

Has_color

Enlarge-set

This heuristic is applied in case we need to generalize concepts of classes but there is no common most

specific general class at our disposal.

UST-BE-Has_shape

Generalization is achieved by unifying these classes.

Has_color

Has_color Has_color Has_color

Generalization

Generalization is used to refine hypothesis by a positive example

Compare the model hypothesis and the positive example to determine a difference
For each difference do
a) ifalink relation in the model points at a value that differs from the value in the example, then

i. ifthe values in which the model and example differ have the most specific general class, use the climb-

tree

else if the values in which the model and example differ don’t have the most specific general class, use
the enlarge-set

I1l. else if these classes are excluding each other use drop-link

Generalization

Generalization is used to refine hypothesis by a positive example

Compare the model hypothesis and the positive example to determine a difference
For each difference do

a) ifalink relation in the model points at a value that differs from the value in the
example, then

i. if the values in which the model and example differ have the most specific general
class, use the climb-tree

ii. else use enlarge-set
iii. if these classes are excluding each other use drop-link
b) if thereis a link in the model that is missing in the example, use drop-link

Drop-link

® If the model contains link that is missing in the positive example or the values
related to the link excluding each other

Has_shape

Has_color ists_t Has_color

Generalization

Generalization is used to refine hypothesis by a positive example

Compare the model hypothesis and the positive example to determine a difference
For each difference do

a) if alink relation in the model points at a value that differs from the value in the
example, then

I. if the values in which the model and example differ have the most specific general
class, use the climb-tree

ii. else use enlarge-set
iii. if these classes are excluding each other use drop-link
b) if there is a link in the model that is missing in the example, use drop-link
c) if the model and example differ at an numerical attribute value , use close-interval

Close-interval

® This heuristic is used if there are links in model and example with numerical value or interval

Has_height Has_height

MUST-BE-Has_height

Generalization

Generalization is used to refine hypothesis by a positive example

Compare the model hypothesis and the positive example to determine a difference
For each difference do

a) ifalink relation in the model points at a value that differs from the value in the
example, then

i. if the values in which the model and example differ have the most specific general
class, use the climb-tree

ii. if these classes are excluding each other use drop-link

iii. else use enlarge-set
b) if thereis alink in the model that is missing in the example, use drop-link
c) if the model and example differ at an attribute value , use close-interval

d) elseignore example

Example of learning - types

X L
Pillar, White, Standing, Block, Tall, Short/(ot);, ;

True/(00:4) 1w

Colour,Shape, Size, Position/((ot),,);.: attributes, i.e. empirical functions that
associate an individual with a property the individual has;

=/(0(01) 1 (01)1y): identity of properties.

Example of learning - positive examples

® Tall white standing object with a shape of block
AW/lt[(’: °Pillar AwAtAx |[°= [°Colour, x| *White]
A| °= | °Position,,; x| °Standing| A | °= | °Size,,; x| °Tall]
A[[°= [°Shapey: x] *Block]

® Tall standing object with a shape of block

Awat| °= Pillar awaedx [[°= [°Size,. x] °Tall]

A [Y= [OPosition,,; x] OStanding] A [U= [OShape,,; x] 0Block]”

Example of learning — near-miss examples

® Tall white object with a shape of a block.

Awat| O= Pillar awltdx [[°= [°Colour, x| *White

A [U= [OSize,, x] OTall] A [U= [OShape,,; x] OBlock]]-
® Short standing object with a shape of a block.
AwAt [O= Opillar AwAtix [[Y= [OSize,,, x] OShort]

A [= [OPosition,,; x] OStanding] A [U= [OShape,,; x] OBlock]”

Example of learning

® Initial hypothesis:

AwAt [O= Opillar AwAtdx [[U= [OColour,,; x] OWhite]

A [= [OPosition,, x] OStanding] A [= [0Size,; x] 0Tall]
A [= [OShape,,; x] OBlock]”

Example of learning - Specialization

® Near miss example: difference is in position -
AwAt ["= °Pillar iwAtix |[°= [°Colour,, x] “White] A[°= [°Size,, x] °Tall]
A [= [OShape,,; x] OBlock]”

® Require-link -> new hypothesis:

AwAt [O= Opillar AwAtix [[= [OColour,,, x] OWhite] A [= [0Size,; x] OTall]

A [True ,,)Lwﬂt[U= [OPosition,,; x] OStanding]] A [= [OShape,,; x] 0Block]”

Example of learning - Generalization

® Positive example: difference is in color-
AwAt [°= OPillar AwatAx [[0= [°Size,,; x| °Tall] A °= | °Position,,; x| °Standing]

A| %= [°Shape,,; x] 0Block]”
® Drop-link -> new hypothesis:
AwAt [O= Opillar AwAtax [[Y= [OSize,,; x] 0Tall]

A [True ,, /1W/1t[= [OPosition,,; x] OStanding]] A [V= [OShape,,; x] 0Block]”

Example of learning - specialization

® Near-miss example:
AwAt [O= Opillar AwAtAx [[V= [0Size,,; x] OShort] A [Y= [OPosition,,; x] OStanding]
A [= [OShape,,; x] OBlock]H

® Conditions are not satisfied -> model is not modified:

szt[": OPillar AwAtAx [[0= [°Size,,; x| °Tall]

A [True ,, /1w/1t[= [Oposition,,; x] OStanding]] A [= [OShape,,; x] 0Block]”

0,X,V,Z > L ;

Arch, Pillar, Roof /(01)14;
Composed_of /(outt) ;y;

Supports/(ow);y;

Block, Polygon/(ot);:;

Shape, Position, Size/
((00) 70t)res

Standing, Tall/(0t) ¢, ;

=,/ (ow);

= /(0(0)7¢ (00)4);

—/(00);

Definition of an arch

AwAt l O= %rch loax3y3z [[OComposed_of,,; 0 x y Z]

>

> > > > >

: OPillar,, x] A [OPillar,,, y] A ["Roof,,; Z] A [O—|[0= «x y]]
: OSupports,,, x Z] A [OSupports,,; y Z]

'True,, AwAt| = | OPosition,,; x| OStanding]]

°True,, Awit| °= [°Position,,; y| OStanding]]

: 0 [OShapewt x] OBlock] A [0 [OShapewt y] 0Block]

| °=[°Shape,,; 7] 0Polygon]”

Sources

® Luger G. F.(2009): Artificial intelligence: structures and strategies for complex
problem solving. 6th ed. Boston: Pearson Addison-Wesley, 2009. ISBN 978-0-
321-54589-3.

® Poole D. L., Mackworth A. K.(2010). Artificial intelligence: foundations of
computational agents. 2nd pub. Cambridge: Cambridge University Press,
2010. ISBN 978-0-521-51900-7.

® Winston P. H.(1992): Artificial intelligence. 3rd ed. Reading, Mass.: Addison-
Wesley Pub. Co., 1992. ISBN 02-015-3377-4.

Thank you for your attention

